388 research outputs found

    Shearer's point process, the hard-sphere model and a continuum Lov\'asz Local Lemma

    Get PDF
    A point process is R-dependent, if it behaves independently beyond the minimum distance R. This work investigates uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are described by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. This work also presents several extensions of the Lov\'asz Local Lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lov\'asz Local Lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach \`a la Dobrushin

    Disagreement percolation for the hard-sphere model

    Full text link
    Disagreement percolation connects a Gibbs lattice gas and i.i.d. site percolation on the same lattice such that non-percolation implies uniqueness of the Gibbs measure. This work generalises disagreement percolation to the hard-sphere model and the Boolean model. Non-percolation of the Boolean model implies the uniqueness of the Gibbs measure and exponential decay of pair correlations and finite volume errors. Hence, lower bounds on the critical intensity for percolation of the Boolean model imply lower bounds on the critical activity for a (potential) phase transition. These lower bounds improve upon known bounds obtained by cluster expansion techniques. The proof uses a novel dependent thinning from a Poisson point process to the hard-sphere model, with the thinning probability related to a derivative of the free energy

    Disagreement percolation for Gibbs ball models

    Get PDF
    We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of pair correlations in the low activity regime by comparison with a sub-critical Boolean model. Applications to the Continuum Random Cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process.Comment: 23 pages, 0 figure Correction, from the published version, of the proof of Section

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting
    corecore